
FIVE

NIST Concept, Evaluation Plan, and API Page 1 of 38

 1

 2

 3

 4

 5

 6

 7

Face In Video Evaluation (FIVE) 8

Concept, Evaluation Plan, and API 9

Version 0.3 10

 11

 12

 13

Patrick Grother and Mei Ngan 14

Image Group

Information Access Division

Information Technology Laboratory

August 18, 2014

 15

 16

 17

FIVE

NIST Concept, Evaluation Plan, and API Page 2 of 38

Timeline of the FIVE Evaluation 18

Phase Date External actions, deadlines

Phase 0 2014-07-15 Web site up, announce schedule

2014-08-15 First draft Evaluation Plan and API

2014-08-31 Public comments on first drafts due

2014-09-15 Second draft Evaluation Plan and API

2014-09-30 Public comments on second drafts due

2014-10-15 Third draft Evaluation Plan and API

2014-10-30 Public comments on third drafts due

2014-11-08 Final Evaluation Plan and API available

2014-10-10 FIVE validation package available

2014-11-10 Updates to FIVE validation package as necessary

Phase 1 2014-11-17 Opening of Phase 1 submission period

 2015-01-08 Deadline for submission for inclusion of results in first interim report card

2015-02-28 First interim report card released to submitting participants

Phase 2 2015-03-01 Opening of Phase 2 submission period

2015-05-05 Deadline for submission for inclusion of results in second interim report
card.

2015-06-30 Second interim report card released to submitting participants

Phase 3 2015-07-01 Opening of Phase 3

2015-09-05 Deadline for submission of algorithms to Phase 3

 19
 20
November 2014

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30

 December 2014

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

January 2015

Su Mo Tu We Th Fr Sa

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

February 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

 March 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

April 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

May 2015

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

June 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

July 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

August 2015

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

September 2015

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

 21

Major API Changes since FRVT 2013 Class V 22

― The header/source files for the API will be made available to implementers at http://nigos.nist.gov:8080/five. 23

 The structures ONEFACE (see Table 12) and MULTIFACE (see Table 13) have been changed to classes. 24

 The MULTIFACE class contains a new “description” member variable and valid values are specified in Table 25
11. 26

 The labels for describing types of still images have been updated (see Table 10). 27

 The ONEVIDEO (see Table 15) class contains a new “peopleDensity” member variable and valid values are 28
specified in Table 14. 29

30

http://nigos.nist.gov:8080/five

FIVE

NIST Concept, Evaluation Plan, and API Page 3 of 38

Table of Contents 31

1. FIVE ... 6 32
1.1. Scope ... 6 33
1.2. Audience .. 6 34
1.3. Market drivers ... 7 35
1.4. Offline testing .. 7 36
1.5. Phased testing ... 7 37
1.6. Interim reports .. 7 38
1.7. Final reports ... 7 39
1.8. Application scenarios ... 8 40
1.9. Image source labels ... 8 41
1.10. Rules for participation ... 8 42
1.11. Number and schedule of submissions ... 8 43
1.12. Use of multiple images per person .. 9 44
1.13. Core accuracy metrics ... 9 45
1.14. Generalized accuracy metrics .. 10 46
1.15. Reporting template size... 10 47
1.16. Reporting computational efficiency .. 10 48
1.17. Exploring the accuracy-speed trade-space .. 10 49
1.18. Hardware specification .. 10 50
1.19. Operating system, compilation, and linking environment .. 11 51
1.20. Software and Documentation ... 11 52
1.21. Runtime behavior .. 12 53
1.22. Threaded computations .. 13 54
1.23. Time limits ... 13 55
1.24. Test datasets .. 14 56
1.25. Ground truth integrity ... 15 57

2. Data structures supporting the API .. 15 58
2.1. Overview .. 15 59
2.2. Requirement .. 15 60
2.3. File formats and data structures ... 15 61
2.4. File structures for enrolled template collection .. 20 62

3. API Specification ... 20 63
3.2. 1:N Identification ... 22 64
3.3. Interfaces ... 24 65

4. References .. 36 66
Annex A Submission of Implementations to the FIVE .. 37 67

A.1 Submission of implementations to NIST .. 37 68
A.2 How to participate.. 37 69
A.3 Implementation validation ... 38 70

 71

List of Figures 72

Figure 1 – Organization and documentation of the FIVE ... 6 73
 74

List of Tables 75

Table 1 – Abbreviations .. 5 76
Table 2 – Subtests supported under the FIVE activity .. 8 77
Table 3 – Cumulative total number of algorithms ... 8 78
Table 4 – Summary of accuracy metrics ... 9 79
Table 5 – Implementation library filename convention ... 11 80
Table 6 – Number of threads allowed for each function ... 13 81
Table 7 – Processing time limits in milliseconds .. 14 82

FIVE

NIST Concept, Evaluation Plan, and API Page 4 of 38

Table 8 – Main video corpora (others will be used) ... 14 83
Table 9 – Main still-image corpora (others will be used) ... 14 84
Table 10 – Labels describing types of images... 15 85
Table 11 – Labels describing types of MULTIFACEs .. 16 86
Table 12 – ONEFACE class .. 16 87
Table 13 – MULTIFACE class ... 17 88
Table 14 – Labels describing the density of people in the video frames ... 17 89
Table 15 – ONEVIDEO Class .. 17 90
Table 16 – EYEPAIR Class .. 18 91
Table 17 – PersonTrajectory typedef ... 18 92
Table 18 – PERSONREP Class .. 18 93
Table 19 – CANDIDATE Class .. 19 94
Table 20 – CANDIDATELIST typedef ... 19 95
Table 21 – ReturnCode class .. 19 96
Table 22 – Enrollment dataset template manifest ... 20 97
Table 23 – API implementation requirements for FIVE .. 21 98
Table 24 – Procedural overview of the identification test ... 22 99
Table 25 – VideoEnrollment::initialize ... 24 100
Table 26 – VideoEnrollment::generateEnrollmentTemplate ... 25 101
Table 27 – VideoFinalize::finalize ... 26 102
Table 28 – VideoFeatureExtraction::initialize .. 27 103
Table 29 – VideoFeatureExtraction::generateIdTemplate ... 27 104
Table 30 – VideoSearch::initialize .. 28 105
Table 31 – VideoSearch::identifyVideo and VideoSearch::identifyImage .. 29 106
Table 32 – ImageEnrollment::initialize ... 30 107
Table 33 – ImageEnrollment::generateEnrollmentTemplate ... 30 108
Table 34 – ImageFinalize::finalize ... 31 109
Table 35 – ImageFeatureExtraction::initialize .. 32 110
Table 36 – ImageFeatureExtraction::generateIdTemplate .. 33 111
Table 37 – ImageSearch::initialize .. 34 112
Table 38 – ImageSearch::identifyVideo .. 34 113
 114

115

FIVE

NIST Concept, Evaluation Plan, and API Page 5 of 38

Acknowledgements 116

― The authors are grateful to the experts who made extensive comments on the first version of this document. 117

Project History 118

― 2012 – 2014 – The FRVT 2013 program included a video track (class V) that evaluated face recognition from video. 119
The FIVE program supersedes the FRVT work but proceeds in an almost identical manner. 120

― August 15, 2014 - Release of first public draft of the Face In Video Evaluation (FIVE) – Concept, Evaluation Plan and 121
API v0.1. 122

Terms and definitions 123

The abbreviations and acronyms of Table 1 are used in many parts of this document. 124

Table 1 – Abbreviations 125

FNIR False negative identification rate

FPIR False positive identification rate

FIVE NIST’s Face In Video Evaluation program

FRVT NIST’s Face Recognition Vendor Test program

FTA Failure to acquire a search sample

FTE Failure to extract features from an enrollment image

DET Detection error tradeoff characteristic: For identification this is a plot of FNIR vs. FPIR.

INCITS InterNational Committee on Information Technology Standards

ISO/IEC 19794 ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image
data. First edition: 2005-06-15. (See Bibliography entry).

MBE NIST's Multiple Biometric Evaluation program

NIST National Institute of Standards and Technology

SDK The term Software Development Kit refers to any library software submitted to NIST. This is used
synonymously with the terms "implementation" and "implementation under test".

126

FIVE

NIST Concept, Evaluation Plan, and API Page 6 of 38

1. FIVE 127

1.1. Scope 128

The Face In Video Evaluation (FIVE) is being conducted to assess the capability of face recognition algorithms to correctly 129
identify or ignore persons appearing in video sequences – i.e. the open-set identification problem. Both comparative and 130
absolute accuracy measures are of interest, given the goals to determine which algorithms are most effective and 131
whether any are viable for the following primary operational use-cases: 132
 133

1. High volume screening of persons in the crowded spaces (e.g. an airport) 134
2. Low volume forensic examination of footage from a crime scene (e.g. a convenience store) 135
3. Persons in business meetings (e.g. for video-conferencing) 136
4. Persons appearing in television footage 137

 138
These applications differ in their tolerance of false positives, whether a human examiner will review outputs, the prior 139
probabilities of mate vs. non-mate presence, and the cost of recognition errors. 140
 141
Out of scope: Areas that are out of scope for this evaluation and will not be studied include: gait, iris and voice 142
recognition; recognition across multiple views (e.g. via stereoscopic techniques); tracking across sequential cameras (re-143
identification); anomaly detection; detection of evasion. 144
 145
This document establishes a concept of operations and an application programming interface (API) for evaluation of face 146
recognition in video implementations submitted to NIST's Face In Video Evaluation. See 147
http://www.nist.gov/itl/iad/ig/five.cfm for all FIVE documentation. 148

 149

Figure 1 – Organization and documentation of the FIVE 150

1.2. Audience 151

Universities and commercial entities with capabilities in detection and identification of faces in video sequences are 152
invited to participate in the FIVE Video test. 153

Face In Video Evaluation
(FIVE)

1:N identification

Video-to-
video

Still-to-
video

Video-to-
still

API and Concept of Operations are defined in this document

http://www.nist.gov/itl/iad/ig/five.cfm

FIVE

NIST Concept, Evaluation Plan, and API Page 7 of 38

Organizations will need to implement the API defined in this document. Participation is open worldwide. There is no 154
charge for participation. While NIST intends to evaluate technologies that could be readily made operational, the test is 155
also open to experimental, prototype and other technologies. 156

1.3. Market drivers 157

This test is intended to support a plural marketplace of face recognition in video systems. There is considerable interest 158
in the potential use of face recognition for identification of persons in videos. 159

1.4. Offline testing 160

While this set of tests is intended as much as possible to mimic operational reality, this remains an offline test executed 161
on databases of images. The intent is to assess the core algorithmic capability of face recognition in video algorithms. This 162
test will be conducted purely offline - it does not include a live human-presents-to-camera component. Offline testing is 163
attractive because it allows uniform, fair, repeatable, and efficient evaluation of the underlying technologies. Testing of 164
implementations under a fixed API allows for a detailed set of performance related parameters to be measured. 165

1.5. Phased testing 166

To support research and development efforts, this testing activity will embed multiple rounds of testing. These test 167
rounds are intended to support improved performance. Once the test commences, NIST will evaluate implementations 168
on a first-come-first-served basis and will return results to providers as expeditiously as possible. Providers may submit 169
revised SDKs to NIST only after NIST provides results for the prior SDK and invites further submission. The frequency with 170
which a provider may submit SDKs to NIST will depend on the times needed for developer preparation, transmission to 171
NIST, validation, execution and scoring at NIST, and developer review and decision processes. 172

For the schedule and number of SDKs of each class that may be submitted, see sections 1.10 and 1.11. 173

1.6. Interim reports 174

The performance of each SDK will be reported in a "score-card". This will be provided to the participant. While the score 175
cards may be used by the provider for arbitrary purposes, they are intended to facilitate development. Score cards will 176

 be machine generated (i.e. scripted), 177

 be provided to participants with identification of their implementation, 178

 include timing, accuracy and other performance results, 179

 include results from other implementations, but will not identify the other providers, 180

 be expanded and modified as revised implementations are tested, and as analyses are implemented, 181

 be generated and released asynchronously with SDK submissions, 182

 be produced independently of the other status of other providers’ implementations, 183

 be regenerated on-the-fly, usually whenever any implementation completes testing, or when new analysis is added. 184

NIST does not intend to release these interim test reports publicly. NIST may release such information to the U.S. 185
Government test sponsors. While these reports are not intended to be made public, NIST can only request that agencies 186
not release this content. 187

1.7. Final reports 188

NIST will publish one or more final public reports. NIST may also 189

 publish additional supplementary reports (typically as numbered NIST Interagency Reports), 190

 publish in other academic journals, 191

 present results at conferences and workshops (typically PowerPoint). 192

FIVE

NIST Concept, Evaluation Plan, and API Page 8 of 38

Our intention is that the final test reports will publish results for the best-performing implementation from each 193
participant. Because “best” is ill-defined (accuracy vs. time vs. template size, for example), the published reports may 194
include results for other implementations. The intention is to report results for the most capable implementations (see 195
section 1.13, on metrics). Other results may be included (e.g. in appendices) to show, for example, examples of progress 196
or tradeoffs. IMPORTANT: Results will be attributed to the providers. 197

1.8. Application scenarios 198

This test will include one-to-many identification tests for video sequences. As described in Table 2, the test is intended to 199
represent identification applications for face recognition in video. 200

Table 2 – Subtests supported under the FIVE activity 201

Video-to-Video Video-to-Still Still-to-Video

1. Aspect 1:N identification of video-to-
video

1:N identification of video-to-still 1:N identification of still-to-video

2. Enrollment
dataset

N enrolled video sequences N enrolled stills N enrolled video sequences

3. Prior NIST test
references

Equivalent to 1 to N matching in [FRVT 2013]

4. Example
application

Open-set identification against a central database, e.g. a search of a wanted criminal through a live-video
surveillance system at an airport who may attempt to flee the country

5. Score or
feature space
normalization
support

Any score or feature based statistical normalization techniques-are applied against enrollment database

6. Intended
number of
subjects

Expected O(102) - O(104)

7. Number of
images per
individual

N/A Variable, see section 1.12. Variable, see section 1.12.

 202

1.9. Image source labels 203

NIST may mix images from different sources in an enrollment set. For example, NIST could combine frontal images and 204
images with varying poses into a single enrollment dataset. For this reason, in the data structure defined in clause 2.3.3, 205
each image is accompanied by a "label" which identifies the set-membership images. Legal values for labels are in clause 206
2.3.2. 207

1.10. Rules for participation 208

A participant must properly follow, complete and submit a participation agreement (see Annex A). This must be done 209
once, not before November 17, 2014. It is not necessary to do this for each submitted SDK. All submitted SDKs must 210
meet the API requirements as detailed in section 3. 211

1.11. Number and schedule of submissions 212

The test is conducted in three phases, as scheduled on page 2. The maximum total (i.e. cumulative) number of 213
submissions is regulated in Table 3. 214

Table 3 – Cumulative total number of algorithms 215

Phase 1 Total over Phases
1 + 2

Total over Phases 1 + 2 + 3

Cumulative total number
of submissions

2 2 4 if at least 1 was successfully executed by end Phase 2
2 if zero had been successfully executed by end Phase 2

FIVE

NIST Concept, Evaluation Plan, and API Page 9 of 38

The numbers above may be increased as resources allow. 216

NIST cannot conduct surveys over runtime parameters - NIST must limit the extent to which participants are able to train 217
on the test data. 218

1.12. Use of multiple images per person 219

Some of the proposed datasets includes K > 2 images per person for some persons. For video-to-still recognition in this 220

test, NIST will enroll K  1 images under each identity. For still-to-video, the probe will consist of K  1 images. Normally 221
the probe will consist of a single image, but NIST may examine the case that it could consist of multiple images. The 222
method by which the face recognition implementation exploits multiple images is not regulated: The test seeks to 223
evaluate developer provided technology for multi-presentation fusion. This departs from some prior NIST tests in which 224
NIST executed fusion algorithms (e.g. [FRVT2002b]), and sum score fusion, for example, [MINEX]). 225

This document defines a template to be the result of applying feature extraction to a set of K  1 images or K  1 video 226
frames. That is, a template contains the features extracted from one or more images or video frames, not generally just 227
one. An SDK might internally fuse K feature sets into a single representation or maintain them separately - In any case the 228
resulting proprietary template is contained in a contiguous block of data. All identification functions operate on such 229
multi-image or multi-frame templates. 230

The number of images per person will depend on the application area: 231

― In civil identity credentialing (e.g. passports, driving licenses) the images will be acquired approximately uniformly 232
over time (e.g. five years for a Canadian passport). While the distribution of dates for such images of a person might 233
be assumed uniform, a number of factors might undermine this assumption1. 234

― In criminal applications the number of images would depend on the number of arrests2. The distribution of dates for 235
arrest records for a person (i.e. the recidivism distribution) has been modeled using the exponential distribution, but 236
is recognized to be more complicated. NIST currently estimates that the number of images will never exceed 100. 237

1.13. Core accuracy metrics 238

For identification testing, the test will target open-universe applications such as benefits-fraud and watch-lists. It will not 239
address the closed-set task because it is operationally uncommon. 240

While some one-to-many applications operate with purely rank-based metrics, this test will primarily target score-based 241
identification metrics. Metrics are defined in Table 4. The analysis will survey over various rank and thresholds. Plots of 242
the two error rates, parametric on threshold, will be the primary reporting mechanism. 243

Table 4 – Summary of accuracy metrics 244

Application Metric

1:N Identification (Video-to-Still) FPIR = The rate at which unknown subjects are incorrectly associated with any
of N enrolled identities. The association will be parameterized on a
continuous threshold T.

FNIR = The rate at which known subjects are incorrectly not associated with the
correct enrolled identities. The association will be parameterized on a
continuous threshold T, and a candidate rank, R.

 245
FPIR will be estimated using probe images or video clips for which there is no enrolled mate. 246

NIST will extend the analysis in other areas, with other metrics, and in response to the experimental data and results. 247

1 For example, a person might skip applying for a passport for one cycle (letting it expire). In addition, a person might submit identical
images (from the same photography session) to consecutive passport applications at five year intervals.
2 A number of distributions have been considered to model recidivism, see ``Random parameter stochastic process models of criminal
careers.'' In Blumstein, Cohen, Roth & Visher (Eds.), Criminal Careers and Career Criminals, Washington, D.C.: National Academy of
Sciences Press, 1986.

FIVE

NIST Concept, Evaluation Plan, and API Page 10 of 38

1.14. Generalized accuracy metrics 248

Under the ISO/IEC 19795-1 biometric testing and reporting standard, a test must account for "failure to acquire" (FTA) 249
and "failure to enroll" (FTE) events (e.g. elective refusal to make a template, or fatal errors). The way these are treated is 250
application-dependent. 251

For identification, the appropriate metrics reported in FIVE will be generalized to include FTA and FTE events. 252

1.15. Reporting template size 253

Because template size is influential on storage requirements and computational efficiency, this API supports 254
measurement of template size. NIST will report statistics on the actual sizes of templates produced by face recognition 255
implementations submitted to FIVE. NIST may report statistics on runtime memory usage. Template sizes were reported 256
in the FRVT 2013 test3, IREX III test4, and the MBE-STILL 2010 test5. 257

1.16. Reporting computational efficiency 258

As with other tests, NIST will compute and report recognition accuracy. In addition, NIST will also report timing statistics 259
for all core functions of the submitted SDK implementations. This includes feature extraction and 1:N recognition. For an 260
example of how efficiency can be reported, see the final report of the FRVT 2013 test, IREX III test, and the MBE-STILL 261
2010 test. 262

1.17. Exploring the accuracy-speed trade-space 263

NIST will explore the accuracy vs. speed tradeoff for face recognition algorithms running on a fixed platform. NIST will 264
report both accuracy and speed of the implementations tested. While NIST cannot force submission of "fast vs. slow" 265
variants, participants may choose to submit variants on some other axis (e.g. "experimental vs. mature") 266
implementations. NIST encourages “fast-less-accurate vs. slow-more-accurate” with a factor of three between the speed 267
of the fast and slow versions. 268

1.18. Hardware specification 269

NIST intends to support high performance by specifying the runtime hardware beforehand. There are several types of 270
computer blades that may be used in the testing. The blades are labeled as Dell M905, M910, M605, and M610. The 271
following list gives some details about the hardware of each blade type: 272

 Dell M605 - Dual Intel Xeon E5405 2 GHz CPUs (4 cores each) 273

 Dell M905 - Quad AMD Opteron 8376HE 2 GHz CPUs (4 cores each) 274

 Dell M610 - Dual Intel Xeon X5680 3.3 GHz CPUs (6 cores each) 275

 Dell M910 - Dual Intel Xeon X7560 2.3 GHz CPUs (8 cores each) 276

Each CPU has 512K cache. The bus runs at 667 Mhz. The main memory is 192 GB Memory as 24 8GB modules. We 277
anticipate that 16 processes can be run without time slicing. 278

The minimum instruction set across all processors used in the evaluation is specified here6. Dependence on instructions 279
not included in the minimum instruction set is prohibited. 280

NIST is requiring use of 64 bit implementations throughout. This will support large memory allocation to support 1:N 281
identification task with image and video frame counts in the millions. For still images, if all templates were to be held in 282
memory, the 192GB capacity implies a limit of ~19KB per template, for a 10 million image enrollment. For video, given 283
the data expectations and the occurrence of faces in the imagery, we anticipate the developers will have sufficient 284

3 See the FRVT 2013 test report: NIST Interagency Report 8009, linked from http://face.nist.gov/frvt
4 See the IREX III test report: NIST Interagency Report 7836, linked from http://iris.nist.gov/irex
5 See the MBE-STILL 2010 test report, NIST Interagency Report 7709, linked from http://face.nist.gov/mbe
6 cat /proc/cpuinfo returns fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht
syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm 3wext 3dnow constant_tsc nonstop_tsc pni cx16 popcnt lahf_lm cmp_legacy svm extapic
cr8_legacy altmovcr8 abm sse4a misalignsse 3dnowprefetch osvw

http://face.nist.gov/frvt
http://iris.nist.gov/irex
http://face.nist.gov/mbe

FIVE

NIST Concept, Evaluation Plan, and API Page 11 of 38

memory for video templates. Note that while the API allows read access of the disk during the 1:N search, the disk is, of 285
course, relatively slow. 286

Some of the section 3 API calls allow the implementation to write persistent data to hard disk. The amount of data shall 287
not exceed 200 kilobytes per enrolled image. NIST will respond to prospective participants' questions on the hardware, 288
by amending this section. 289

1.19. Operating system, compilation, and linking environment 290

The operating system that the submitted implementations shall run on will be released as a downloadable file accessible 291
from http://nigos.nist.gov:8080/evaluations/, which is the 64-bit version of CentOS 6.2 running Linux kernel 2.6.32-220. 292

For this test, Windows machines will not be used. Windows-compiled libraries are not permitted. All software must run 293
under Linux. 294

NIST will link the provided library file(s) to our C++ language test drivers. Participants are required to provide their library 295
in a format that is linkable using g++ version 4.4.6. The standard libraries are: 296

/usr/lib64/libstdc++.so.6.0.13 lib64/libc.so.6 -> libc-2.12.so lib64/libm.so.6 -> libm-2.12.so 297

A typical link line might be 298

g++ -I. -Wall -m64 -o fivetest fivetest.cpp -L. –lfive_Enron_A_07 299

The Standard C++ library should be used for development of the SDKs. The prototypes from the API of this document will 300
be written to a file "five.h" which will be included via 301

#include <five.h>

The header files will be made available to implementers at http://nigos.nist.gov:8080/five. 302

NIST will handle all input of images via the JPEG and PNG libraries, sourced, respectively from http://www.ijg.org/ and see 303
http://libpng.org. 304

All compilation and testing will be performed on x86 platforms. Thus, participants are strongly advised to verify library-305
level compatibility with g++ (on an equivalent platform) prior to submitting their software to NIST to avoid linkage 306
problems later on (e.g. symbol name and calling convention mismatches, incorrect binary file formats, etc.). 307

Dependencies on external dynamic/shared libraries such as compiler-specific development environment libraries are 308
discouraged. If absolutely necessary, external libraries must be provided to NIST upon prior approval by the Test Liaison. 309

1.20. Software and Documentation 310

1.20.1. SDK Library and Platform Requirements 311

Participants shall provide NIST with binary code only (i.e. no source code). Header files (“.h”) are allowed, but these shall 312
not contain intellectual property of the company nor any material that is otherwise proprietary. It is preferred that the 313
SDK be submitted in the form of a single static library file. However, dynamically linked shared library files are permitted. 314

The core library shall be named according to Table 5. Additional shared object library files may be submitted that support 315
this “core” library file (i.e. the “core” library file may have dependencies implemented in these other libraries). 316

Intel Integrated Performance Primitives (IPP) libraries are permitted if they are delivered as a part of the developer-317
supplied library package. It is the provider’s responsibility to establish proper licensing of all libraries. The use of IPP 318
libraries shall not inhibit the SDK’s ability to run on CPUs that do not support IPP. Please take note that some IPP 319
functions are multithreaded and threaded implementations may complicate comparative timing. 320

Access to any GPUs is not permitted. 321

Table 5 – Implementation library filename convention 322

Form libFIVE_provider_sequence.ending

Underscore
delimited parts of

libFIVE provider sequence ending

http://nigos.nist.gov:8080/evaluations/
http://nigos.nist.gov:8080/five
http://www.ijg.org/
http://libpng.org/

FIVE

NIST Concept, Evaluation Plan, and API Page 12 of 38

the filename

Description First part of the
name, required to
be this.

Single word name of
the main provider
EXAMPLE: Acme

A two digit decimal
identifier to start at 00
and increment by 1
every time any SDK is
sent to NIST. EXAMPLE:
07

Either .so or .a

Example libFIVE_Acme_C_07.a

 323

NIST will report the size of the supplied libraries. 324

1.20.2. Configuration and developer-defined data 325

The implementation under test may be supplied with configuration files and supporting data files. The total size of the 326
SDK, that is all libraries, include files, data files and initialization files shall be less than or equal to 1 073 741 824 bytes = 327
10243 bytes. 328

NIST will report the size of the supplied configuration files. 329

1.20.3. Installation and Usage 330

The SDK must install easily (i.e. one installation step with no participant interaction required) to be tested, and shall be 331
executable on any number of machines without requiring additional machine-specific license control procedures or 332
activation. 333

The SDK shall be installable using simple file copy methods. It shall not require the use of a separate installation program. 334

The SDK shall neither implement nor enforce any usage controls or limits based on licenses, number of executions, 335
presence of temporary files, etc. The submitted implementations shall remain operable with no expiration date. 336

Hardware (e.g. USB) activation dongles are not acceptable. 337

1.20.4. Hard disk space 338

FIVE participants should inform NIST if their implementations require more than 100K of persistent storage, per enrolled 339
image on average. 340

1.20.5. Documentation 341

Participants shall provide complete documentation of the SDK and detail any additional functionality or behavior beyond 342
that specified here. The documentation must define all (non-zero) developer-defined error or warning return codes. 343

1.20.6. Modes of operation 344

Individual SDKs provided shall not include multiple “modes” of operation, or algorithm variations. No switches or options 345
will be tolerated within one library. For example, the use of two different “coders” by a feature extractor must be split 346
across two separate SDK libraries, and two separate submissions. 347

1.20.7. Watermarking of images 348

The SDK functions shall not watermark or otherwise steganographically mark up the images or video frames. 349

1.21. Runtime behavior 350

1.21.1. Interactive behavior 351

The SDK will be tested in non-interactive “batch” mode (i.e. without terminal support). Thus, the submitted library shall 352
not use any interactive functions such as graphical user interface (GUI) calls, or any other calls which require terminal 353
interaction e.g. reads from “standard input”. 354

FIVE

NIST Concept, Evaluation Plan, and API Page 13 of 38

1.21.2. Error codes and status messages 355

The SDK will be tested in non-interactive “batch” mode, without terminal support. Thus, the submitted library shall run 356
quietly, i.e. it should not write messages to "standard error" and shall not write to “standard output”. An SDK may write 357
debugging messages to a log file - the name of the file must be declared in documentation. 358

1.21.3. Exception Handling 359

The application should include error/exception handling so that in the case of a fatal error, the return code is still 360
provided to the calling application. 361

1.21.4. External communication 362

Processes running on NIST hosts shall not side-effect the runtime environment in any manner, except for memory 363
allocation and release. Implementations shall not write any data to external resource (e.g. server, file, connection, or 364
other process), nor read from such. If detected, NIST will take appropriate steps, including but not limited to, cessation of 365
evaluation of all implementations from the supplier, notification to the provider, and documentation of the activity in 366
published reports. 367

1.21.5. Stateless behavior 368

All components in this test shall be stateless, except as noted. This applies to face detection, feature extraction and 369
matching. Thus, all functions should give identical output, for a given input, independent of the runtime history. NIST 370
will institute appropriate tests to detect stateful behavior. If detected, NIST will take appropriate steps, including but not 371
limited to, cessation of evaluation of all implementations from the supplier, notification to the provider, and 372
documentation of the activity in published reports. 373

1.22. Threaded computations 374

Table 6 shows the limits on the numbers of threads a face recognition implementation may use. In many cases threading 375
is not permitted (i.e. T=1) because NIST will parallelize the test by dividing the workload across many cores and many 376
machines. For the functions where we allow multi-threading, NIST requires the provider to disclose the maximum 377
number of threads to us. If that number is T, NIST will run the largest integer number of processes, P, in parallel such that 378

TP  16. 379

Table 6 – Number of threads allowed for each function 380

Function Video

Feature extraction 1

Finalize enrollment
(before 1:N)

1  T  16

Identification 1  T  16

For comparative timing, the IREX III4 test report estimated a factor by which the speed of threaded algorithms would be 381
adjusted. Non-threaded implementations will eliminate the need for NIST to apply such techniques [IREX III]. 382

NIST will not run an implementation from participant X and an implementation from participant Y on the same machine at 383
the same time. 384

To expedite testing, for single-threaded libraries, NIST will run up to P = 16 processes concurrently. NIST's calling 385
applications are single-threaded. 386

1.23. Time limits 387

The elemental functions of the implementations shall execute under the time constraints of Table 7. These time limits 388
apply to the function call invocations defined in section 3. Assuming the times are random variables, NIST cannot regulate 389
the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than 390
the identified duration. 391

FIVE

NIST Concept, Evaluation Plan, and API Page 14 of 38

The time limits apply per image or video frame. When K images of a person are present or K frames are in a video clip, 392
the time limits shall be increased by a factor K. 393

Table 7 – Processing time limits in milliseconds 394

Function Video-to-Video Video-to-Still Still-to-Video

Feature extraction enrollment 5 * 1500 per video
frame (1 core)

1500 per image (1
core)

5 * 1500 per video
frame (1 core)

Feature extraction for
identification

5 * 1500 per video
frame (1 core)

1500 per image (1
core)

5 * 1500 per video
frame (1 core)

For video: the multiple of 5 is a notional average of the number of persons expected in any given frame. This figure is 395
proportionally unreliable for any given sample. 396

In addition the enrollment finalization procedure is subject to a time limit, as follows. For an enrollment of one million 397
single-image MULTIFACEs, the total time shall be less than 7200 seconds. The implementation can use up to 16 cores. 398
This limit includes disk IO time. 399

1.24. Test datasets 400

This section is under development. The data has, in some cases, been estimated from initial small partitions. The 401
completion of this section depends on further work. The information is subject to change. We intend to update this 402
section as fully as possible. 403

NIST is likely to use other datasets, in addition. 404

Table 8 – Main video corpora (others will be used) 405

 Dataset P Dataset T Other datasets - Undisclosed

Collection, environment Indoor recreational
venue

Indoor venue

Video frame size 1920 x 1080 Various

Eye to eye distance 10-100 pixels 10-150 pixels

Camera properties Consumer-grade video
cameras

Professional-grade video
cameras

Frames per second 24 Up to 30

 406

Table 9 – Main still-image corpora (others will be used) 407

 Laboratory FRVT 2002+2006 / HCINT Dataset R Multiple Encounter Database
(MEDS)

Collection, environment See FRVT 2006
Report, Phillips
et al.
NIST IR 7408.

Visa application process Visa application process Law enforcement booking

Live scan, Paper Live Live Live, few paper

Documentation See NIST IR 6965 [FRVT2002] New See NIST Special Database 32
Volume 1 (MEDS-I) and Volume 2
(MEDS-II)7.

Compression from [MBE
2010]8

JPEG mean size 9467 bytes. See
[FRVT2002b]

JPEG mean size 17 kilobytes JPEG ~ 20:1

Maximum image size 300 x 252 300 x 252 Mixed, some are 640x480 others
are 768x960, some are smaller.

7 NIST Special Database 32, Volume 1 and Volume 2 are available at: http://www.nist.gov/itl/iad/ig/sd32.cfm. MEDS-II is an update to
MEDS-I and was published in February 2011. Note that NIST does not provide "training" data per se - this differs from the paradigm
often used in academic research where a model is trained, tested and validated. Instead FIVE follows operational reality: software is
typically shipped "as is" with a fixed internal representation that is designed to be usable "off the shelf" without training and with only
minimal configuration.
8 Compression effects were studied under MBE 2010 in NIST Interagency Report 7830, linked from http://face.nist.gov/mbe

http://www.nist.gov/itl/iad/ig/sd32.cfm
http://face.nist.gov/mbe

FIVE

NIST Concept, Evaluation Plan, and API Page 15 of 38

Minimum image size 300 x 252 300 x 252

Eye to eye distance Median = 71 pixels Median = 71 pixels mean=156, sd=46

Frontal Yes, well controlled Moderately well controlled
Profile images will be included and
labeled as such.

Full frontal geometry Yes, in most cases. Faces may
have small background than ISO
FF requires.

Yes, in most cases. Faces may
have small background than ISO
FF requires.

Mostly not. Varying amounts of
the torso are visible.

Age University
population

18 years and above 0 years and above 18 years and above

1.25. Ground truth integrity 408

Some of the test databases will be derived from operational systems. They may contain ground truth errors in which 409

― a single person is present under two different identifiers, or 410

― two persons are present under one identifier, or 411

― in which a face is not present in the image. 412

If these errors are detected, they will be removed. NIST will use aberrant scores (high impostor scores, low genuine 413
scores) to detect such errors. This process will be imperfect, and residual errors are likely. For comparative testing, 414
identical datasets will be used and the presence of errors should give an additive increment to all error rates. For very 415
accurate implementations this will dominate the error rate. NIST intends to attach appropriate caveats to the accuracy 416
results. For prediction of operational performance, the presence of errors gives incorrect estimates of performance. 417

2. Data structures supporting the API 418

2.1. Overview 419

This section describes the API for the face recognition in video applications described in section 1.8. All SDK's submitted 420
to FIVE shall implement the functions required in Section 3. 421

2.2. Requirement 422

FIVE participants shall submit an SDK which implements the relevant C++ prototyped interfaces of clause 3. C++ was 423
chosen in order to make use of some object-oriented features. 424

2.3. File formats and data structures 425

2.3.1. Overview 426

In this test, an individual is represented by K  1 two-dimensional facial images, and by subject and image-specific 427
metadata. 428

2.3.2. Dictionary of terms describing images and MULTIFACEs 429

Images will be accompanied by one of the labels given in Table 10. Face recognition implementations submitted to FIVE 430
should tolerate images of any category. 431

Table 10 – Labels describing types of images 432

 Label as C++ string Meaning Yaw
(degrees)

Pitch
(degrees)

1. "unknown" Either the label is unknown or unassigned.

2. “uncontrolled” Any illumination, pose is unknown and could be frontal
3. “FF” Full frontal 0 0

4. “FD” Face down 0 10 to 40

FIVE

NIST Concept, Evaluation Plan, and API Page 16 of 38

5. “FU” Face up 0 -10 to -40

6. “QL” Quarter left -10 to -45 0

7 “QR” Quarter right 10 to 45 0

8. “HL” Half left -46 to -75 0

9. “HR” Half right 46 to 75 0
10. “PL” Profile left -90 0

11. “PR” Profile right 90 0

12. “QLU” Quarter left up -10 to -45 -10 to -40
13. “QRU” Quarter right up 10 to 45 -10 to -40

14. “HLU” Half left up -46 to -75 -10 to -40
15. “HRU” Half right up 46 to 75 -10 to -40

NOTE 1: We do not intend to deliberately include non-face images in this test. 433

NOTE 2: MULTIFACEs will contain face images of only one person. 434

 435
A MULTIFACE (see Table 13) will be accompanied by one of the labels given in Table 11. Face recognition 436
implementations submitted to FIVE should tolerate MULTIFACEs of any category. 437

Table 11 – Labels describing types of MULTIFACEs 438

 Label as C++ string Meaning

1. “FRONTAL” All ONEFACEs contain nominally frontal images and are
labeled “FF”.

2. “MULTIPOSE” Each ONEFACE is labeled with one of the following:
“FF”, “FD”, “FU”, “QL”, “QR”, “HL”, “HR”, “PL”, “PR”, “QLU”,
“QRU”, “HLU”, “HRU”.

3. “INFORMAL” All ONEFACEs contain informal images that are labeled
“uncontrolled”.

4. “UNKNOWN” Each ONEFACE is labeled with one of the labels from Table
10, including possibly “unknown” or “uncontrolled”.

 439

2.3.3. Data structures for encapsulating multiple images 440

The standardized formats for facial images are the ISO/IEC 19794-5:2005 and the ANSI/NIST ITL 1-2007 type 10 record. 441
The ISO record can store multiple images of an individual in a standalone binary file. In the ANSI/NIST realm, K images of 442
an individual are usually represented as the concatenation of one Type 1 record + K Type 10 records. The result is usually 443
stored as an EFT file. 444

An alternative method of representing K images of an individual is to define a structure containing an image filename and 445
metadata fields. Each file contains a standardized image format, e.g. PNG (lossless) or JPEG (lossy). 446

2.3.4. Class for encapsulating a single face image 447

Table 12 – ONEFACE class 448

 C++ code fragment Remarks
1. class ONEFACE
2. {

private:

3. uint16_t imageWidth; Number of pixels horizontally
4. uint16_t imageHeight; Number of pixels vertically
5. uint16_t imageDepth; Number of bits per pixel. Legal values are 8 and 24.
6. uint8_t format; Flag indicating native format of the image as supplied to NIST

0x01 = JPEG (i.e. compressed data)
0x02 = PNG (i.e. never compressed data)

FIVE

NIST Concept, Evaluation Plan, and API Page 17 of 38

7. uint8_t *data; Pointer to raster scanned data. Either RGB color or intensity.
If image_depth == 24 this points to 3WH bytes RGBRGBRGB...
If image_depth == 8 this points to WH bytes IIIIIII

8. std::string description; Single description of the image. The allowed values for this string
are given in Table 10.

9. public:

 //getter/setter methods

10. };

2.3.5. Class for encapsulating a set of face images from a single person 449

Table 13 – MULTIFACE class 450

 C++ code fragment Remarks
1. class MULTIFACE

{

private:

 std::vector<ONEFACE> faces;

Vector containing F pre-allocated face images of the same
person. The number of items stored in the vector is
accessible via the vector::size() function.

2. std::string description; Single description of the vector of ONEFACEs. The allowed
values for this string are given in Table 11.

3. public:

 //getter/setter methods

4. };

2.3.6. Dictionary of terms describing ONEVIDEOs 451

A ONEVIDEO will be accompanied by one of the labels given in Table 14, describing the density of people in the video 452
frames. Face recognition implementations submitted to FIVE should tolerate ONEVIDEOs of any category. 453

Table 14 – Labels describing the density of people in the video frames 454

 Label as C++ string Meaning

1. “SINGLE” All of the video frames contain one and only one person
2. “UNKNOWN” Video frames can contain zero or more people in each

frame.

The “SINGLE” label would be applied, for example, to video of a television news presenter. 455

2.3.7. Class for encapsulating a video sequence 456

Table 15 – ONEVIDEO Class 457

 C++ code fragment Remarks
1. class ONEVIDEO
2. {

private:

3. uint16_t frameWidth; Number of pixels horizontally of all frames
4. uint16_t frameHeight; Number of pixels vertically of all frames
5. uint8_t frameDepth; Number of bits per pixel for all frames. Legal values are 8 and 24.
6. uint16_t framesPerSec; The frame rate of the video sequence
7. std::string peopleDensity; Single description of the density of people in the video frames. The

allowed values for this string are given in Table 14.
8. public:

 std::vector<uint8_t*> data;
Vector of pointers to data from each frame in the video sequence.
The number of frames (ie. size of the vector) can be obtained by
calling vector::size(). The i-th entry in data (ie. data[i]) points to
frame_width x frame_height pixels of data for the i-th frame.

9. //getter/setter methods

};

10.

FIVE

NIST Concept, Evaluation Plan, and API Page 18 of 38

2.3.8. Class representing a pair of eye coordinates 458

The data structure for reporting person locations in video appears in Table 16. The coordinates may be useful to NIST for 459
relating spatial location to recognition success during our analysis. 460

Table 16 – EYEPAIR Class 461

 C++ code fragment Remarks
1. class EYEPAIR
2. {

private:

3. bool isSet; If the eye coordinates have been computed and assigned successfully, this value
should be set to true, otherwise it should be set to false.

4. int16_t xLeft;

 int16_t yLeft;
X and Y coordinate of the center of the subject's left eye. Out-of-range values (e.g.
x < 0 or x >= width) indicate the implementation believes the eye center is outside
the image.

5. int16_t xRight;

 int16_t yRight;
X and Y coordinate of the center of the subject's right eye. Out-of-range values
(e.g. x < 0 or x >= width) indicate the implementation believes the eye center is
outside the image.

6. uint16_t frameNum For video: the frame number that corresponds to the video frame from which the
eye coordinates were generated. (ie. the i-th frame from the video sequence).
This field should not be set for eye coordinates for a single still image.

7. public:

 //getter/setter methods

};

8.

2.3.9. Data type for representing a person’s trajectory via eye coordinates from a video sequence 462

Table 17 – PersonTrajectory typedef 463

 C++ code fragment Remarks
1. typedef std::vector<EYEPAIR>

PersonTrajectory;
Vector of EYEPAIR (see 2.3.8) objects for video frames where eyes were
detected. This data structure should store eye coordinates for each video
frame where eyes were detected for a particular person. For video frames
where the person’s eyes were not detected, the SDK shall not add an EYEPAIR
to this data structure.

If a face can be detected, but not the eyes, this structure could be populated
with (x,y)LEFT == (x,y)RIGHT

2.3.10. Class for representing a person from a video sequence or an image 464

Table 18 – PERSONREP Class 465

 C++ code fragment Remarks
1. class PERSONREP
2. {

private:

3. PersonTrajectory eyeCoordinates; Data structure for capturing eye coordinates
4. PersonTemplate proprietaryTemplate; PersonTemplate is a wrapper to a uint8_t* for capturing

proprietary template data representing a person from a video
sequence or an image.

5. public:
6. PERSONREP(const uint64_t inSize); The constructor takes a size parameter and allocates memory of

inSize. getPersonTemplatePtr() should be called to access the
newly allocated memory for SDK manipulation. Please note that
this class will take care of all memory allocation and de-allocation
of its own memory. The SDK shall not de-allocate memory
created by this class.

7. void pushBackEyeCoord(const EYEPAIR &eyes); This function should be used to add EYEPAIRs for the video
frames or images where eye coordinates were detected.

FIVE

NIST Concept, Evaluation Plan, and API Page 19 of 38

8. uint8_t* getPersonTemplatePtr(); This function returns a uint8_t* to the template data.
9. uint64_t getPersonTemplateSize() const; This function returns the size of the template data.
10. //… getter methods, copy constructor,

 //… assignment operator

11. };

2.3.11. Class for result of an identification search 466

All identification searches shall return a candidate list of a NIST-specified length. The list shall be sorted with the most 467
similar matching entries list first with lowest rank. 468

Table 19 – CANDIDATE Class 469

 C++ code fragment Remarks
1. class CANDIDATE

2. {

private:

3. bool isSet If the candidate is valid, this should be set to true. If the candidate computation failed, this
should be set to false.

4. uint32_t templateId; The Template ID integer from the enrollment database manifest defined in clause 2.3.6.

5. double similarityScore; Measure of similarity between the identification template and the enrolled candidate.
Higher scores mean more likelihood that the samples are of the same person.

An algorithm is free to assign any value to a candidate. The distribution of values will have
an impact on the appearance of a plot of false-negative and false-positive identification
rates.

6. public:
 //getter/setter methods

7. };

2.3.12. Data type for representing a list of results of an identification search 470

Table 20 – CANDIDATELIST typedef 471

 C++ code fragment Remarks
1. typedef std::vector<CANDIDATE> CANDIDATELIST; A vector containing objects of CANDIDATEs. The

CANDIDATE class is defined in section 2.3.11.

 472

2.3.13. Class representing return code values 473

Table 21 – ReturnCode class 474

 C++ code fragment Remarks
 class ReturnCode {

public:

1. enum Status
2. {
3. Success=0, Success
4. MissingConfig=1, The configuration data is missing or unreadable
5. EnrollDirFailed=2, An operation on the enrollment directory failed
6. InitNumData=3, The SDK can’t support the number of images or videos
7. InitBadDesc=4, The image descriptions are unexpected or unusable
8. RefuseInput=5, Elective refusal to process this kind of input (ONEVIDEO or

MULTIFACE)
9. FailExtract=6, Involuntary failure to extract features
10. FailTempl=7, Elective refusal to produce a template
11. FailParse=8, Cannot parse input data
12. FinInputData=9, Cannot locate input data
13. FinTemplFormat=10, One or more template files are in an incorrect format

FIVE

NIST Concept, Evaluation Plan, and API Page 20 of 38

14. IdBadTempl=11, The input template was defective
15. Vendor=88 Vendor-defined failure
16. };
17. ReturnCode(const Status inStatus); Constructor that takes an input parameter of a Status enum value.

All of the functions that need to be implemented for the Video API
return an instantiation of a ReturnCode object with a valid status
value passed in as a parameter.

18. Status getStatus() const; Getter method to return status value
19. private:
20. Status status; Member variable for storing status
21. };

2.4. File structures for enrolled template collection 475

For still image enrollment, an SDK converts a MULTIFACE into a template using the 476
ImageEnrollment::generateEnrollmentTemplate() function of section 3.3.8.2. For video enrollment, an SDK converts a 477
ONEVIDEO into one or more templates, using the VideoEnrollment::generateEnrollmentTemplate() of section 3.3.1.2. To 478
support the identification functions, NIST will concatenate enrollment templates into a single large file. This file is called 479
the EDB (for enrollment database). The EDB is a simple binary concatenation of proprietary templates. There is no 480
header. There are no delimiters. The EDB may extend to hundreds of gigabytes in length. 481

This file will be accompanied by a manifest; this is an ASCII text file documenting the contents of the EDB. The manifest 482
has the format shown as an example in Table 22. If the EDB contains N templates, the manifest will contain N lines. The 483
fields are space (ASCII decimal 32) delimited. There are three fields, all containing numeric integers. Strictly speaking, the 484
third column is redundant. 485

Table 22 – Enrollment dataset template manifest 486

Field name Template ID Template Length Position of first byte in EDB

Datatype required Unsigned decimal integer Unsigned decimal integer Unsigned decimal integer

Datatype length required 4 bytes 4 bytes 8 bytes

Example lines of a manifest file
appear to the right. Lines 1, 2, 3
and N appear.

90201744 1024 0

163232021 1536 1024

7456433 512 2560

...

183838 1024 307200000

 487
The EDB scheme avoids the file system overhead associated with storing millions of individual files. 488

3. API Specification 489

3.1.1. Definitions 490

As shown in Table 23, the video API supports 1:N identification of video-to-video, video-to-still image, and still image-to-491
video. The following hold: 492

 A still image is a picture of one and only one person. One or more such images are presented to the implementation 493
using a MULTIFACE data structure. 494

 A video is a sequence of F ≥ 1 frames containing P ≥ 0 persons. 495

 A frame is 2D still image containing P ≥ 0 persons. 496

 Any person might be present in 0 ≤ f ≤ F frames, and their presence may be non-contiguous (e.g. due to occlusion). 497

 Different videos contain different numbers of frames and people. 498

 A ONEVIDEO container is used to represent a video. It contains a small header and pointers to F frames. 499

 Any person found in a video is represented by proprietary template (feature) data contained with a PERSONREP data 500
structure. A proprietary template contains information from one or more frames. Internally, it might embed multiple 501
traditional still-image templates, or it might integrate feature data by tracking a person across multiple frames. 502

FIVE

NIST Concept, Evaluation Plan, and API Page 21 of 38

 A PERSONREP structure additionally contains a trajectory indicating the location of the person in each frame. 503
 504
All of the code for the classes needed to implement the video API will be provided to implementers at 505
http://nigos.nist.gov:8080/five. A single sample video has been made available at the same link. The sample video is 506
only approximately representative of the scene and is not an extraction from the actual video data that will be used in the 507
evaluation. It is only intended to illustrate similarities in terms of camera placement relative to the subject and people 508
behavior. It is not intended to represent the optical properties of the actual imaging systems, particularly the spatial 509
sampling rate, nor the compression characteristics. 510

NIST does not know the minimum and maximum numbers of persons appearing in video sequences. Moreover, NIST will 511
apply the algorithms to other databases. The maximum number of frames in a video sequence will be limited by the 512
duration of the sequence. NIST expects to use sequences whose duration extends from a few seconds to a few minutes. 513
 514
Some notes regarding the video data: 515

 NIST does not anticipate using interlaced video. 516

 The videos are contiguous in time, without interruptions. 517

 Some sequences exist at much higher frame rates. NIST will examine whether this offers benefit. 518

 Some of the datasets were collected using consumer-grade cameras capturing video in standard formats while 519
others were collected using professional-grade cameras captured in modern proprietary video codecs. 520

 521
In some videos, the scenes capture people walking towards the camera. Occasionally, there are people walking in various 522
transverse directions including people walking away from the camera. The cameras have varying pitch angles ranging 523
from 0 degrees (frontal) to higher values. The depth of scene varies between the cameras such that the sizes of the faces 524
vary, with the following: 525

 Eye-to-eye distances range from approximately 10 pixels to 120 pixels 526

 Amount of time a face is fully visible in a scene can vary from approximately 0 to 30 seconds 527

 Some of the captures include non-uniform lighting due to light coming through adjacent windows 528
 529

Please note that the properties stated above may not hold for all datasets that might be employed in FIVE. 530
 531

Table 23 – API implementation requirements for FIVE 532

Function Video-to-video Still-to-video Video-to-still

Enroll Videos Videos Stills

Enrollment input datatype ONEVIDEO ONEVIDEO MULTIFACE

Enrollment datatype PERSONREP PERSONREP PERSONREP

Search Video Still Video

Search input datatype ONEVIDEO MULTIFACE ONEVIDEO

Search datatype PERSONREP PERSONREP PERSONREP

Search result CANDIDATELIST CANDIDATELIST CANDIDATELIST

API requirements 3.3.1 + 3.3.2 +
3.3.4 + 3.3.6

3.3.1 + 3.3.2 +
3.3.11 + 3.3.6

3.3.8 + 3.3.9 +
3.3.4 + 3.3.12

3.1.1.1. Video-to-video 533

Video-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 534
search video. During identification, the SDK shall return a set of indices of candidate videos that contain people who 535
appear in the search video. 536

 N templates will be generated from M enrollment videos. If no people appear in the videos, N will be 0. If many 537
people appear in each video, we'd expect N > M. 538

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 539

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 540
video. 541

http://nigos.nist.gov:8080/five

FIVE

NIST Concept, Evaluation Plan, and API Page 22 of 38

 Each identification template generated will be searched against the enrollment database of templates generated 542
from the M input videos. 543

 We anticipate that the same person may appear in more than one enrolled video. 544

3.1.1.2. Still image-to-video 545

Still image-to-video identification is the process of enrolling N videos and then searching the enrollment database with a 546
template produced from a MULTIFACE as follows: 547

 N templates will be generated from 1 < M ≤ N enrollment videos. 548

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 549

 A MULTIFACE (still image) will be converted to an identification template. 550

 The identification template will be searched against the enrollment database of N templates. 551

 We anticipate that the same person may appear in more than one enrolled video. 552

3.1.1.3. Video-to-still image 553

Video-to-still image identification is the process of enrolling N MULTIFACEs (see Table 13) and then searching the 554
enrollment database with templates from persons found in a video as follows 555

 N templates will be generated from N still-image MULTIFACEs. 556

 The N templates will be concatenated and finalized into a proprietary enrollment data structure. 557

 A ONEVIDEO will be converted to S ≥ 0 identification template(s) based on the number of people detected in the 558
video. 559

 Each of the S identification templates will be searched separately against the enrollment database of N templates. 560

3.2. 1:N Identification 561

3.2.1. Overview 562

The 1:N application proceeds in two phases, enrollment and identification. The identification phase includes separate 563
pre-search feature extraction stage, and a search stage. 564

The design reflects the following testing objectives for 1:N implementations. 565

 support distributed enrollment on multiple machines, with multiple processes running in parallel

 allow recovery after a fatal exception, and measure the number of occurrences

 allow NIST to copy enrollment data onto many machines to support parallel testing

 respect the black-box nature of biometric templates

 extend complete freedom to the provider to use arbitrary algorithms

 support measurement of duration of core function calls

 support measurement of template size

Table 24 – Procedural overview of the identification test 566

P
h

as
e

Name Description Performance Metrics to be reported
by NIST

FIVE

NIST Concept, Evaluation Plan, and API Page 23 of 38

En
ro

llm
en

t
E1 Initialization For still image enrollment, give the implementation advance notice

of the number of individuals and images that will be enrolled.

Give the implementation the name of a directory where any
provider-supplied configuration data will have been placed by NIST.
This location will otherwise be empty.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase. The implementation is
permitted read-only access to the configuration directory.

After enrollment, NIST may rename and relocate the enrollment
directory - the implementation should not depend on the name of
the enrollment directory.

E2 Parallel
Enrollment

For still image enrollment, for each of N individuals, pass multiple
images to the implementation for conversion to a combined
template. For video enrollment, for each of M video clips, pass
multiple video frames to the implementation for generation of N
templates, based on the number of people detected in the videos.
The implementation will return a template to the calling application.

The implementation is permitted read-only access to the enrollment
directory during this phase. NIST's calling application will be
responsible for storing all templates as binary files. These will not be
available to the implementation during this enrollment phase.

Multiple instances of the calling application may run simultaneously
or sequentially. These may be executing on different computers.
For still image enrollment, the same person will not be enrolled
twice.

Statistics of the times needed to
enroll an individual or video clip.

Statistics of the sizes of created
templates.

The incidence of failed template
creations.

E3 Finalization Permanently finalize the enrollment directory. This supports, for
example, adaptation of the image-processing functions, adaptation
of the representation, writing of a manifest, indexing, and
computation of statistical information over the enrollment dataset.

The implementation is permitted read-write-delete access to the
enrollment directory during this phase.

For still image enrollment, size of
the enrollment database as a
function of population size N and
the number of images.

Duration of this operation. The time
needed to execute this function
shall be reported with the preceding
enrollment times.

P
re

-s
ea

rc
h

S1 Initialization Tell the implementation the location of an enrollment directory. The
implementation could look at the enrollment data.

The implementation is permitted read-only access to the enrollment
directory during this phase. Statistics of the time needed for this
operation.

Statistics of the time needed for this
operation.

S2 Template
preparation

For each probe, create a template from a set of input images or one
or more templates from a set of video clips. This operation will
generally be conducted in a separate process invocation to step S2.

The implementation is permitted no access to the enrollment
directory during this phase.

The result of this step is a search template.

Statistics of the time needed for this
operation.

Statistics of the size of the search
template(s).

Se
ar

ch

S3 Initialization Tell the implementation the location of an enrollment directory. The
implementation should read all or some of the enrolled data into
main memory, so that searches can commence.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

S4 Search A template or multiple templates is searched against the enrollment
database.

The implementation is permitted read-only access to the enrollment
directory during this phase.

Statistics of the time needed for this
operation.

Accuracy metrics - Type I + II error

FIVE

NIST Concept, Evaluation Plan, and API Page 24 of 38

rates.

Failure rates.

3.3. Interfaces 567

3.3.1. The VideoEnrollment Interface 568

The abstract class VideoEnrollment must be implemented by the SDK developer in a class named exactly 569
SdkVideoEnrollment. The processing that takes place during each phase of the test is done via calls to the methods 570
declared in the interface as pure virtual, and therefore is to be implemented by the SDK. The test driver will call these 571
methods, handling all return values. 572

 C++ code fragment Remarks
1. class VideoEnrollment
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numVideos) = 0 ;

Initialize the enrollment session.

4. virtual ReturnCode generateEnrollmentTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &enrollTemplates) = 0;

Generate enrollment template(s) for the persons detected in
the input video. This function takes a ONEVIDEO (see 2.3.6)
as input and populates a vector of PERSONREP (see 2.3.10)
with the number of persons detected from the video
sequence. The implementation could call vector::push_back
to insert into the vector.

5. // Destructor
6. };

3.3.1.1. Initialization of the video enrollment session 573

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-574
to-video and still image-to-video. 575

Table 25 – VideoEnrollment::initialize 576

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numVideos); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1 times

by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK should
tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to the
enrollment directory. This function may be called P times and these may be running simultaneously and in parallel.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate this
folder in any manner it sees fit. Permissions will be read-write-delete.

numVideos The total number of videos that will be passed to the SDK for enrollment.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

Vendor Vendor-defined failure

FIVE

NIST Concept, Evaluation Plan, and API Page 25 of 38

3.3.1.2. Video enrollment 577

A ONEVIDEO is converted to enrollment template(s) for each person detected in the ONEVIDEO using the function below. 578

Table 26 – VideoEnrollment::generateEnrollmentTemplate 579

Prototypes ReturnCode generateEnrollmentTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &enrollTemplates); Output

Description This function takes a ONEVIDEO, and outputs a vector of PERSONREP objects. If the function executes correctly (i.e.
returns a ReturnCode::Success exit status), the NIST calling application will store the template. The NIST application
will concatenate the templates and pass the result to the enrollment finalization function. For a video in which no
persons appear, a valid output is an empty vector (i.e. size() == 0).

If the function gives a non-zero exit status:

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified
correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputVideo An instance of a Table 15 class.

Output
Parameters

enrollTemplates For each person detected in the ONEVIDEO, the function shall identify the person’s
estimated eye centers for each video frame where the person’s eye coordinates can be
calculated. The eye coordinates shall be captured in the PERSONREP.eyeCoordinates
variable, which is a vector of EYEPAIR objects. The frame number from the video of where
the eye coordinates were detected shall be captured in the EYEPAIR.frameNum variable for
each pair of eye coordinates. In the event the eye centers cannot be calculated (ie. the
person becomes out of sight for a few frames in the video), the SDK shall not store an
EYEPAIR for those frames.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST with
the submission of the implementation under test.

3.3.2. The VideoFinalize Interface 580

The abstract class VideoFinalize must be implemented by the SDK developer in a class named exactly SdkVideoFinalize. 581
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 582
manifest have been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + 583
write. 584

 C++ code fragment Remarks
1. class VideoFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional book-
keeping operations and statistical processing. The function will
generally be called in a separate process after all the enrollment
processes are complete.

4. // Destructor
5. };

FIVE

NIST Concept, Evaluation Plan, and API Page 26 of 38

3.3.3. Finalize video enrollment 585

After all templates have been created, the function of Table 27 will be called. This freezes the enrollment data. After this 586
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 587
phases. 588

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 589
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 590
No output is expected from this function, except a return code. 591

Table 27 – VideoFinalize::finalize 592

Prototypes ReturnCode finalize (

const string &enrollDir, Input

const string &edbName, Input

const string &edbManifest); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have been
stored. These are described in section 2.3.6. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing. The
function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should probably
do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section 2.3.6.
While the file will have read-write-delete permission, the SDK should only alter the file if it
preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.3.6.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.4. The VideoFeatureExtraction Interface 593

The abstract class VideoFeatureExtraction must be implemented by the SDK developer in a class named exactly 594
SdkVideoFeatureExtraction. 595

 C++ code fragment Remarks
1. class VideoFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

FIVE

NIST Concept, Evaluation Plan, and API Page 27 of 38

4. virtual ReturnCode generateIdTemplate(

 const ONEVIDEO &inputVideo,

 vector<PERSONREP> &idTemplates) = 0;

Generate identification template(s) for the persons
detected in the input video. This function takes a
ONEVIDEO (see 2.3.6) as input and populates a vector
of PERSONREP (see 2.3.10) with the number of
persons detected from the video sequence. The
implementation could call vector::push_back to insert
into the vector.

5. // Destructor
6. };

3.3.5. Video feature extraction initialization 596

Before one or more ONEVIDEOs are sent to the identification feature extraction function, the test harness will call the 597
initialization function below. 598

Table 28 – VideoFeatureExtraction::initialize 599

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called once by the

NIST application immediately before any M  1 calls to generateIdTemplate. The SDK should tolerate execution of P
=> 1 processes on the same machine each of which can read the configuration directory. This function may be called
P times and these may be running simultaneously and in parallel.

The implementation has read-only access to its prior enrollment data.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The top-level directory in which enrollment data was placed and then finalized by
the implementation. The implementation can parameterize subsequent template
production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.5.1. Video feature extraction 600

A ONEVIDEO is converted to one or more identification templates using the function below. The result may be stored by 601
NIST, or used immediately. The SDK shall not attempt to store any data. 602

Table 29 – VideoFeatureExtraction::generateIdTemplate 603

Prototypes ReturnCode generateIdTemplate(

const ONEVIDEO &inputVideo, Input

std::vector<PERSONREP> &idTemplates); Output

Description This function takes a ONEVIDEO (see 2.3.6) as input and populates a vector of PERSONREP (see 2.3.10) with the
number of persons detected from the video sequence. The implementation could call vector::push_back to insert
into the vector.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the implementation does not need to know). If the function
returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

InputVideo An instance of a section 2.3.6 class. Implementations must alter their behavior according to
the people detected in the video sequence.

FIVE

NIST Concept, Evaluation Plan, and API Page 28 of 38

Output
Parameters

IdTemplates For each person detected in the video, the function shall create a PERSONREP (see section
2.3.10) object, populate it with a template and eye coordinates for each frame where eyes
were detected, and add it to the vector.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.6. The VideoSearch Interface 604

The abstract class VideoSearch must be implemented by the SDK developer in a class named exactly SdkVideoSearch. 605

 C++ code fragment Remarks
1. class VideoSearch
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idVideoTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-video identification

This function searches a template generated from a
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 2.3.12).

5. virtual ReturnCode identifyImage(

 const PERSONREP &idImageTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For still-to-video identification

This function searches a template generated from a
MULTIFACE against the enrollment set, and outputs a
vector containing candListLength objects of Candidates.

6. // Destructor
7. };

3.3.6.1. Video identification initialization 606

The function below will be called once prior to one or more calls of the searching function of Table 31. The function might 607
set static internal variables so that the enrollment database is available to the subsequent identification searches. 608

Table 30 – VideoSearch::initialize 609

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by the
VideoFinalize::finalize function.

Input
Parameters

configDir A read-only directory containing any developer-supplied configuration parameters or
run-time data files.

enrollDir The top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

FIVE

NIST Concept, Evaluation Plan, and API Page 29 of 38

3.3.7. Video identification search 610

The function below compares a proprietary identification template against the enrollment data and returns a candidate 611
list. 612

Table 31 – VideoSearch::identifyVideo and VideoSearch::identifyImage 613

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO
against the enrollment set (video-to-video)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

 ReturnCode identifyImage(Searches a template generated from a MULTIFACE
against the enrollment set (still-to-video)

const PERSONREP &idImageTemplate, Input

const uint32_t candListLength, Input

CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength Candidates (see section 2.3.12). Each candidate shall be populated by the implementation and
added to candList. Note that candList will be an empty vector when passed into this function. The candidates shall
appear in descending order of similarity score - i.e. most similar entries appear first.

Input
Parameters

idTemplate A template from generateIdTemplate() - If the value returned by that function was non-zero the
contents of idTemplate will not be used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined in section
2.3.12. Each candidate shall be populated by the implementation and added to this vector. The
candidates shall appear in descending order of similarity score - i.e. most similar entries appear
first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

3.3.8. The ImageEnrollment Interface 614

The abstract class ImageEnrollment must be implemented by the SDK developer in a class named exactly 615
SdkImageEnrollment. 616

 C++ code fragment Remarks
1. class ImageEnrollment
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir,

 const uint32_t numPersons,

 const uint32_t numImages,

 const vector<string> &descriptions) = 0 ;

Initialize the enrollment session.

4. virtual ReturnCode generateEnrollmentTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see
2.3.3) as input and outputs a proprietary
template represented by a PERSONREP
(see 2.3.10).

For each input image in the MULTIFACE,
the function shall return the estimated
eye centers by setting
PERSONREP.eyeCoordinates.

5. // Destructor
6. };

FIVE

NIST Concept, Evaluation Plan, and API Page 30 of 38

3.3.8.1. Initialization of the image enrollment session 617

Before any enrollment feature extraction calls are made, the NIST test harness will call the initialization below for video-618
to-still. 619

Table 32 – ImageEnrollment::initialize 620

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir, Input

const uint32_t numPersons, Input

const uint32_t numImages, Input

const std::vector<string> &descriptions); Input

Description

This function initializes the SDK under test and sets all needed parameters. This function will be called N=1

times by the NIST application immediately before any M  1 calls to generateEnrollmentTemplate. The SDK
should tolerate execution of P > 1 processes on the same machine each of which may be reading and writing to
the enrollment directory. This function may be called P times and these may be running simultaneously and in
parallel.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files.

 enrollDir The directory will be initially empty, but may have been initialized and populated by separate
invocations of the enrollment process. When this function is called, the SDK may populate
this folder in any manner it sees fit. Permissions will be read-write-delete.

 numPersons The number of persons who will be enrolled.

numImages The total number of images that will be enrolled, summed over all identities.

descriptions A lexicon of labels one of which will be assigned to each enrollment image. See Table 10 for
valid values.
NOTE: The identification search images may or may not be labeled. An identification image
may carry a label not in this set of labels. The number of items stored in the vector is
accessible via the vector::size() function.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

InitNumData The SDK cannot support the number of videos.

InitBadDesc The descriptions are unexpected, or unusable.

Vendor Vendor-defined failure

3.3.8.2. Image enrollment 621

A MULTIFACE (see Table 13) is converted to a single enrollment template using the function below. 622

Table 33 – ImageEnrollment::generateEnrollmentTemplate 623

Prototypes ReturnCode generateEnrollmentTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE, and outputs a proprietary template in the form of a PERSONREP object. If the
function executes correctly (i.e. returns a ReturnCode::Success exit status), the NIST calling application will store
the template. The NIST application will concatenate the templates and pass the result to the enrollment
finalization function.

If the function gives a non-zero exit status:

 If the exit status is ReturnCode::FailParse, NIST will debug, otherwise

 the test driver will ignore the output template (the template may have any size including zero)

 the event will be counted as a failure to enroll. Such an event means that this person can never be identified

FIVE

NIST Concept, Evaluation Plan, and API Page 31 of 38

correctly.

IMPORTANT. NIST's application writes the template to disk. The implementation must not attempt writes to the
enrollment directory (nor to other resources). Any data needed during subsequent searches should be included in
the template, or created from the templates during the enrollment finalization function.

Input
Parameters

inputFaces

An instance of a Table 13 structure.

Output
Parameters

outputTemplate An instance of a section 2.3.10 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.9. The ImageFinalize Interface 624

The abstract class ImageFinalize must be implemented by the SDK developer in a class named exactly SdkImageFinalize. 625
The finalize function in this class takes the name of the top-level directory where enrollment database (EDB) and its 626
manifest have been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + 627
write. 628

 C++ code fragment Remarks
1. class ImageFinalize
2. {

public:

3. virtual ReturnCode finalize(

 const string &enrollDir,

 const string &edbName,

 const string &edbManifest) = 0;

This function supports post-enrollment developer-optional
book-keeping operations and statistical processing. The
function will generally be called in a separate process after all
the enrollment processes are complete.

4. // Destructor
5. };

3.3.10. Finalize image enrollment 629

After all templates have been created, the function of Table 34 will be called. This freezes the enrollment data. After this 630
call the enrollment dataset will be forever read-only. This API does not support interleaved enrollment and search 631
phases. 632

The function allows the implementation to conduct, for example, statistical processing of the feature data, indexing and 633
data re-organization. The function may alter the file structure. It may increase or decrease the size of the stored data. 634
No output is expected from this function, except a return code. 635

Table 34 – ImageFinalize::finalize 636

Prototypes ReturnCode finalize(

const string &enrollDir, Input

const string &edbName, Input

const string &edbManifest); Input

Description This function takes the name of the top-level directory where enrollment database (EDB) and its manifest have

FIVE

NIST Concept, Evaluation Plan, and API Page 32 of 38

been stored. These are described in section 2.3.6. The enrollment directory permissions will be read + write.

The function supports post-enrollment developer-optional book-keeping operations and statistical processing.
The function will generally be called in a separate process after all the enrollment processes are complete.

This function should be tolerant of being called two or more times. Second and third invocations should

probably do nothing.

Input
Parameters

enrollDir The top-level directory in which enrollment data was placed. This variable allows an
implementation to locate any private initialization data it elected to place in the
directory.

edbName The name of a single file containing concatenated templates, i.e. the EDB of section
2.3.6.
While the file will have read-write-delete permission, the SDK should only alter the file if
it preserves the necessary content, in other files for example.
The file may be opened directly. It is not necessary to prepend a directory name.

edbManifest The name of a single file containing the EDB manifest of section 2.3.6.
The file may be opened directly. It is not necessary to prepend a directory name.

Output
Parameters

None

ReturnCode Success Success

FinInputData Cannot locate the input data - the input files or names seem incorrect.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission, space).

FinTemplFormat One or more template files are in an incorrect format.

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.11. The ImageFeatureExtraction Interface 637

The abstract class ImageFeatureExtraction must be implemented by the SDK developer in a class named exactly 638
SdkImageFeatureExtraction. 639

 C++ code fragment Remarks
1. class ImageFeatureExtraction
2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the feature extraction session.

4. virtual ReturnCode generateIdTemplate(

 const MULTIFACE &inputFaces,

 PERSONREP &outputTemplate) = 0;

This function takes a MULTIFACE (see 2.3.3) as
input and outputs a proprietary template
represented by a PERSONREP (see 2.3.10).

For each input image in the MULTIFACE, the
function shall return the estimated eye centers by
setting PERSONREP.eyeCoordinates.

5. // Destructor
6. };

3.3.11.1. Image feature extraction initialization 640

Before one or more MULTIFACEs are sent to the identification feature extraction function, the test harness will call the 641
initialization function below. 642

Table 35 – ImageFeatureExtraction::initialize 643

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function initializes the SDK under test and sets all needed parameters. This function will be called once by

FIVE

NIST Concept, Evaluation Plan, and API Page 33 of 38

 the NIST application immediately before M  1 calls to generateIdTemplate. The SDK should tolerate
execution of P ≥ 1 processes on the same machine each of which can read the configuration directory. This
function may be called P times and these may be running simultaneously and in parallel.

The implementation has read-only access to its prior enrollment data.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters
or run-time data files.

 enrollDir The top-level directory in which enrollment data was placed and then finalized by
the implementation. The implementation can parameterize subsequent template
production on the basis of the enrolled dataset.

Output
Parameters

none

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.11.2. Image feature extraction 644

A MULTIFACE is converted to one identification template using the function below. The result may be stored by NIST, or 645
used immediately. The SDK shall not attempt to store any data. 646

Table 36 – ImageFeatureExtraction::generateIdTemplate 647

Prototypes ReturnCode generateIdTemplate(

const MULTIFACE &inputFaces, Input

PERSONREP &outputTemplate); Output

Description This function takes a MULTIFACE (see 2.3.3) as input and populates a PERSONREP (see 2.3.10) with a proprietary
template and eye coordinates.

If the function executes correctly, it returns a zero exit status. The NIST calling application may commit the template
to permanent storage, or may keep it only in memory (the developer implementation does not need to know). If the
function returns a non-zero exit status, the output template will be not be used in subsequent search operations.

The function shall not have access to the enrollment data, nor shall it attempt access.

Input
Parameters

inputFaces

An instance of a Table 13 structure.

Output
Parameters

outputTemplate An instance of a section 2.3.10 class, which stores proprietary template data and eye
coordinates. The function shall identify the person’s estimated eye centers for each image
in the MULTIFACE. The eye coordinates shall be captured in the
PERSONREP.eyeCoordinates variable, which is a vector of EYEPAIR objects. In the event
the eye centers cannot be calculated, the SDK shall store an EYEPAIR and set EYEPAIR.isSet
to false to indicate there was a failure in generating eye coordinates. In other words, for N
images in the MULTIFACE.

ReturnCode Success Success

RefuseInput Elective refusal to process this kind of ONEVIDEO

FailExtract Involuntary failure to extract features (e.g. could not find face in the input-image)

FailTempl Elective refusal to produce a template (e.g. insufficient pixels between the eyes)

FailParse Cannot parse input data (i.e. assertion that input record is non-conformant)

Vendor Vendor-defined failure. Failure codes must be documented and communicated to NIST
with the submission of the implementation under test.

3.3.12. The ImageSearch Interface 648

The abstract class ImageSearch must be implemented by the SDK developer in a class named exactly SdkImageSearch. 649

 C++ code fragment Remarks
1. class VideoFeatureExtraction

FIVE

NIST Concept, Evaluation Plan, and API Page 34 of 38

2. {

public:

3. virtual ReturnCode initialize(

 const string &configDir,

 const string &enrollDir) = 0;

Initialize the search session.

4. virtual ReturnCode identifyVideo(

 const PERSONREP &idTemplate,

 const uint32_t candListLength,

 CANDIDATELIST &candList) = 0;

For video-to-still identification

This function searches a template generated from a
ONEVIDEO against the enrollment set, and outputs a
vector containing candListLength objects of Candidates
(see section 2.3.12). Each candidate shall be populated
by the implementation and added to candList. The
candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

5. // Destructor
6. };

3.3.12.1. Image identification initialization 650

The function below will be called once prior to one or more calls of the searching function of Table 38. The function might 651
set static internal variables so that the enrollment database is available to the subsequent identification searches. 652

Table 37 – ImageSearch::initialize 653

Prototype ReturnCode initialize(

const string &configDir, Input

const string &enrollDir); Input

Description This function reads whatever content is present in the enrollment_directory, for example a manifest placed there by
the ImageFinalize::finalize function.

Input Parameters configDir A read-only directory containing any developer-supplied configuration parameters or run-time
data files.

enrollDir The top-level directory in which enrollment data was placed.

ReturnCode Success Success

MissingConfig The configuration data is missing, unreadable, or in an unexpected format.

EnrollDirFailed An operation on the enrollment directory failed (e.g. permission).

Vendor Vendor-defined failure

3.3.13. Image identification search 654

The function below performs a video-to-still identification and compares a proprietary identification template generated 655
from a video against the enrollment data and returns a candidate list. 656

Table 38 – ImageSearch::identifyVideo 657

Prototype ReturnCode identifyVideo(Searches a template generated from a ONEVIDEO against the enrollment
set (video-to-still)

 const PERSONREP &idVideoTemplate, Input

 const uint32_t candListLength, Input

 CANDIDATELIST &candList); Output

Description

This function searches an identification template against the enrollment set, and outputs a vector containing
candListLength objects of Candidates (see section 2.3.12). Each candidate shall be populated by the implementation
and added to candList. Note that candList will be an empty vector when passed into this function. The candidates
shall appear in descending order of similarity score - i.e. most similar entries appear first.

Input Parameters idTemplate A template from VideoFeatureExtraction::generateIdTemplate() - If the value
returned by that function was non-zero the contents of idTemplate will not be
used and this function (i.e. identifyVideo) will not be called.

candListLength The number of candidates the search should return

FIVE

NIST Concept, Evaluation Plan, and API Page 35 of 38

Output
Parameters

candList A vector containing candListLength objects of Candidates. The datatype is defined
in section 2.3.12. Each candidate shall be populated by the implementation and
added to this vector. The candidates shall appear in descending order of similarity
score - i.e. most similar entries appear first.

ReturnCode Success Success

IdBadTempl The input template was defective.

Vendor Vendor-defined failure

NOTE: Ordinarily the calling application will set the input candidate list length to operationally typical values, say 0  L  658
200, and L << N. However, there is interest in the presence of mates much further down the candidate list. We may 659
therefore extend the candidate list length such that L approaches N. 660

FIVE

NIST Concept, Evaluation Plan, and API Page 36 of 38

4. References 661

AN27 NIST Special Publication 500-271: American National Standard for Information Systems — Data Format for the Interchange
of Fingerprint, Facial, & Other Biometric Information – Part 1. (ANSI/NIST ITL 1-2007). Approved April 20, 2007.

FRVT 2002 Face Recognition Vendor Test 2002: Evaluation Report, NIST Interagency Report 6965, P. Jonathon Phillips, Patrick Grother,
Ross J. Micheals, Duane M. Blackburn, Elham Tabassi, Mike Bone

FRVT 2002b Face Recognition Vendor Test 2002: Supplemental Report, NIST Interagency Report 7083, Patrick Grother

FRVT 2006 P. Jonathon Phillips, W. Todd Scruggs, Alice J. O’Toole, Patrick J. Flynn, Kevin W. Bowyer, Cathy L. Schott, and Matthew
Sharpe. "FRVT 2006 and ICE 2006 Large-Scale Results." NISTIR 7408, March 2007.

FRVT 2013 P. Grother and M. Ngan, Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms, NIST
Interagency Report 8009, Released May 26, 2014. http://face.nist.gov/frvt

IREX III P. Grother, G.W. Quinn, J. Matey, M. Ngan, W. Salamon, G. Fiumara, C. Watson, Iris Exchange III, Performance of Iris
Identification Algorithms, NIST Interagency Report 7836, Released April 9, 2012. http://iris.nist.gov/irex

ISO

STD05

ISO/IEC 19794-5:2005 — Information technology — Biometric data interchange formats — Part 5: Face image data. The
standard was published in 2005, and can be purchased from ANSI at http://webstore.ansi.org/

Multipart standard of "Biometric data interchange formats". This standard was published in 2005. It was amended twice to
include guidance to photographers, and then to include 3D information. Two corrigenda were published. All these changes
and new material is currently being incorporated in revision of the standard. Publication is likely in early 2011. The
documentary history is as follows.

ISO/IEC 19794-5: Information technology — Biometric data interchange formats — Part 5:Face image data. First edition:
2005-06-15.

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 1: Published 2008-07-01

International Standard ISO/IEC 19794-5:2005 Technical Corrigendum 2: Published 2008-07-01

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 1: Conditions for
taking photographs for face image data. Published 2007-12-15

Information technology — Biometric data interchange formats — Part 5: Face image data AMENDMENT 2: Three
dimensional image data.

JTC 1/SC37/N3303. FCD text of the second edition. Contact pgrother AT nist DOT gov for more information.

MBE P. Grother, G .W. Quinn, and P. J. Phillips, Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation of 2D Still
Image Face Recognition Algorithms, NIST Interagency Report 7709, Released June 22, 2010. Revised August 23, 2010.

http://face.nist.gov/mbe

MINEX P. Grother et al., Performance and Interoperability of the INCITS 378 Template, NIST IR 7296
http://fingerprint.nist.gov/minex04/minex_report.pdf

MOC P. Grother and W. Salamon, MINEX II - An Assessment of ISO/IEC 7816 Card-Based Match-on-Card Capabilities

http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf

PERFSTD

INTEROP

ISO/IEC 19795-4 — Biometric Performance Testing and Reporting — Part 4: Interoperability Performance Testing. Posted
as document 37N2370. The standard was published in 2007. It can be purchased from ANSI at http://webstore.ansi.org/.

 662

http://face.nist.gov/frvt
http://iris.nist.gov/irex
http://webstore.ansi.org/
http://face.nist.gov/mbe
http://fingerprint.nist.gov/minex04/minex_report.pdf
http://fingerprint.nist.gov/minex/minexII/NIST_MOC_ISO_CC_interop_test_plan_1102.pdf
http://isotc.iso.org/livelink/livelink/6993846/JTC001-SC37-N-2370.pdf?func=doc.Fetch&nodeid=6993846
http://webstore.ansi.org/

FIVE

NIST Concept, Evaluation Plan, and API Page 37 of 38

Annex A 663

Submission of Implementations to the FIVE 664

A.1 Submission of implementations to NIST 665

NIST requires that all software, data and configuration files submitted by the participants be signed and encrypted. 666
Signing is done with the participant's private key, and encryption is done with the NIST public key. The detailed 667
commands for signing and encrypting are given here: http://www.nist.gov/itl/iad/ig/encrypt.cfm 668

NIST will validate all submitted materials using the participant's public key, and the authenticity of that key will be verified 669
using the key fingerprint. This fingerprint must be submitted to NIST by writing it on the signed participation agreement. 670

By encrypting the submissions, we ensure privacy; by signing the submission, we ensure authenticity (the software 671
actually belongs to the submitter). NIST will reject any submission that is not signed and encrypted. NIST accepts no 672
responsibility for anything that is transmitted to NIST that is not signed and encrypted with the NIST public key. 673

A.2 How to participate 674

Those wishing to participate in FIVE testing must do all of the following, on the schedule listed on Page 2. 675

― IMPORTANT: Follow the instructions for cryptographic protection of your SDK and data here. 676
http://www.nist.gov/itl/iad/ig/encrypt.cfm 677

― Send a signed and fully completed copy of the Application to Participate in the Face In Video Evaluation (FIVE). This is 678
available at http://www.nist.gov/itl/iad/ig/five.cfm. This must identify, and include signatures from, the Responsible 679
Parties as defined in the application. The properly signed FIVE Application to Participate shall be sent to NIST as a 680
PDF. 681

― Provide an SDK (Software Development Kit) library which complies with the API (Application Programmer Interface) 682
specified in this document. 683

 Encrypted data and SDKs below 20MB can be emailed to NIST at five@nist.gov 684

 Encrypted data and SDKS above 20MB shall be 685

EITHER 686

 Split into sections AFTER the encryption step. Use the unix "split" commands to make 9MB chunks, 687
and then rename to include the filename extension need for passage through the NIST firewall. 688

 you% split –a 3 –d –b 9000000 libFIVE_enron_A_02.tgz.gpg 689

 you% ls -1 x??? | xargs –iQ mv Q libFIVE_enron_A_02_Q.tgz.gpg 690

 Email each part in a separate email. Upon receipt NIST will 691

 nist% cat FIVE2012_enron_A02_*.tgz.gpg > libFIVE_enron_A_02.tgz.gpg 692

OR 693

 Made available as a file.zip.gpg or file.zip.asc download from a generic http webserver9, 694

OR 695

 Mailed as a file.zip.gpg or file.zip.asc on CD / DVD to NIST at this address: 696

FIVE Test Liaison (A203)
100 Bureau Drive
A203/Tech225/Stop 8940
NIST
Gaithersburg, MD 20899-8940
USA

In cases where a courier needs a phone number, please
use NIST shipping and handling on: 301 -- 975 -- 6296.

9 NIST will not register, or establish any kind of membership, on the provided website.

http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/encrypt.cfm
http://www.nist.gov/itl/iad/ig/five.cfm
mailto:five@nist.gov

FIVE

NIST Concept, Evaluation Plan, and API Page 38 of 38

A.3 Implementation validation 697

Registered Participants will be provided with a small validation dataset and test program available on the website 698

http://www.nist.gov/itl/iad/ig/five.cfm shortly after the final evaluation plan is released. 699

The validation test programs shall be compiled by the provider. The output of these programs shall be submitted to NIST. 700

Prior to submission of the SDK and validation data, the Participant must verify that their software executes on the 701
validation images, and produces correct similarity scores and templates. 702

Software submitted shall implement the FIVE API Specification as detailed in the body of this document. 703

Upon receipt of the SDK and validation output, NIST will attempt to reproduce the same output by executing the SDK on 704
the validation imagery, using a NIST computer. In the event of disagreement in the output, or other difficulties, the 705
Participant will be notified. 706

http://www.nist.gov/itl/iad/ig/five.cfm

